The crystal structure of Pyrococcus abyssi tRNA (uracil-54, C5)-methyltransferase provides insights into its tRNA specificity

نویسندگان

  • Hélène Walbott
  • Nicolas Leulliot
  • Henri Grosjean
  • Béatrice Golinelli-Pimpaneau
چکیده

The 5-methyluridine is invariably found at position 54 in the TPsiC loop of tRNAs of most organisms. In Pyrococcus abyssi, its formation is catalyzed by the S-adenosyl-l-methionine-dependent tRNA (uracil-54, C5)-methyltransferase ((Pab)TrmU54), an enzyme that emerged through an ancient horizontal transfer of an RNA (uracil, C5)-methyltransferase-like gene from bacteria to archaea. The crystal structure of (Pab)TrmU54 in complex with S-adenosyl-l-homocysteine at 1.9 A resolution shows the protein organized into three domains like Escherichia coli RumA, which catalyzes the same reaction at position 1939 of 23S rRNA. A positively charged groove at the interface between the three domains probably locates part of the tRNA-binding site of (Pab)TrmU54. We show that a mini-tRNA lacking both the D and anticodon stem-loops is recognized by (Pab)TrmU54. These results were used to model yeast tRNA(Asp) in the (Pab)TrmU54 structure to get further insights into the different RNA specificities of RumA and (Pab)TrmU54. Interestingly, the presence of two flexible loops in the central domain, unique to (Pab)TrmU54, may explain the different substrate selectivities of both enzymes. We also predict that a large TPsiC loop conformational change has to occur for the flipping of the target uridine into the (Pab)TrmU54 active site during catalysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insights into the hyperthermostability and unusual region-specificity of archaeal Pyrococcus abyssi tRNA m1A57/58 methyltransferase

The S-adenosyl-L-methionine dependent methylation of adenine 58 in the T-loop of tRNAs is essential for cell growth in yeast or for adaptation to high temperatures in thermophilic organisms. In contrast to bacterial and eukaryotic tRNA m(1)A58 methyltransferases that are site-specific, the homologous archaeal enzyme from Pyrococcus abyssi catalyzes the formation of m(1)A also at the adjacent po...

متن کامل

THUMP from archaeal tRNA:m2G10 methyltransferase, a genuine autonomously folding domain

The tRNA:m2G10 methyltransferase of Pyrococus abyssi (PAB1283, a member of COG1041) catalyzes the N,N-dimethylation of guanosine at position 10 in tRNA. Boundaries of its THUMP (THioUridine synthases, RNA Methyltransferases and Pseudo-uridine synthases)—containing N-terminal domain [1–152] and C-terminal catalytic domain [157–329] were assessed by trypsin limited proteolysis. An interdomain fle...

متن کامل

Dynamics of RNA modification by a multi-site-specific tRNA methyltransferase

In most organisms, the widely conserved 1-methyl-adenosine58 (m1A58) tRNA modification is catalyzed by an S-adenosyl-L-methionine (SAM)-dependent, site-specific enzyme TrmI. In archaea, TrmI also methylates the adjacent adenine 57, m1A57 being an obligatory intermediate of 1-methyl-inosine57 formation. To study this multi-site specificity, we used three oligoribonucleotide substrates of Pyrococ...

متن کامل

THUMP from archaeal tRNA:m22G10 methyltransferase, a genuine autonomously folding domain

The tRNA:m2(2)G10 methyltransferase of Pyrococus abyssi (PAB1283, a member of COG1041) catalyzes the N2,N2-dimethylation of guanosine at position 10 in tRNA. Boundaries of its THUMP (THioUridine synthases, RNA Methyltransferases and Pseudo-uridine synthases)--containing N-terminal domain [1-152] and C-terminal catalytic domain [157-329] were assessed by trypsin limited proteolysis. An inter-dom...

متن کامل

Structural insight into the methyltransfer mechanism of the bifunctional Trm5

The wyosine derivatives present at position 37 in transfer RNAs (tRNAs) are critical for reading frame maintenance. The methyltransferase Trm5a from Pyrococcus abyssi (PaTrm5a) plays a key role in this hypermodification process in generating m1G37 and imG2, two products of the wyosine biosynthetic pathway, through two methyl transfers to distinct substrates, but the mechanism is currently unkno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008